Нод и нок двух чисел, алгоритм евклида. Алгоритм евклида - нахождение наибольшего общего делителя Алгоритм евклида методика преподавания в вузе

Наибольший общий делитель

Определение 2

Если натуральное число a делится на натуральное число $b$, то $b$ называют делителем числа $a$, а число $a$ называют кратным числа $b$.

Пусть $a$ и $b$-натуральные числа. Число $c$ называют общим делителем и для $a$ и для $b$.

Множество общих делителей чисел $a$ и $b$ конечно, так как ни один из этих делителей не может быть больше, чем $a$. Значит,среди этих делителей есть наибольший, который называют наибольшим общим делителем чисел $a$ и $b$ и для его обозначения используют записи:

$НОД \ (a;b) \ или \ D \ (a;b)$

Чтобы найти наибольший общий делитель двух, чисел необходимо:

  1. Найти произведение чисел, найденных на шаге 2. Полученное число и будет искомым наибольшим общим делителем.

Пример 1

Найти НОД чисел $121$ и $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Выбрать числа, которые входят в разложение этих чисел

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=2\cdot 11=22$

Пример 2

Найти НОД одночленов $63$ и $81$.

Будем находить согласно представленному алгоритму. Для этого:

    Разложим числа на простые множители

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Выбираем числа, которые входят в разложение этих чисел

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Найдем произведение чисел, найденных на шаге 2.Полученное число и будет искомым наибольшим общим делителем.

    $НОД=3\cdot 3=9$

Найти НОД двух чисел можно и по-другому, используя множество делителей чисел.

Пример 3

Найти НОД чисел $48$ и $60$.

Решение:

Найдем множество делителей числа $48$: $\left\{{\rm 1,2,3.4.6,8,12,16,24,48}\right\}$

Теперь найдем множество делителей числа $60$:$\ \left\{{\rm 1,2,3,4,5,6,10,12,15,20,30,60}\right\}$

Найдем пересечение этих множеств: $\left\{{\rm 1,2,3,4,6,12}\right\}$- данное множество будет определять множество общих делителей чисел $48$ и $60$. Наибольший элемент в данном множестве будет число $12$. Значит наибольший общий делитель чисел $48$ и $60$ будет $12$.

Определение НОК

Определение 3

Общим кратным натуральных чисел $a$ и $b$ называется натуральное число, которое кратно и $a$ и $b$.

Общими кратными чисел называются числа которые делятся на исходные без остатка.Например для чисел $25$ и $50$ общими кратными будут числа $50,100,150,200$ и т.д

Наименьшее из общих кратных будет называться наименьшим общим кратным и обозначается НОК$(a;b)$ или K$(a;b).$

Чтобы найти НОК двух чисел, необходимо:

  1. Разложить числа на простые множители
  2. Выписать множители, входящие в состав первого числа и добавить к ним множители, которые входят в состав второго и не ходят в состав первого

Пример 4

Найти НОК чисел $99$ и $77$.

Будем находить согласно представленному алгоритму. Для этого

    Разложить числа на простые множители

    $99=3\cdot 3\cdot 11$

    Выписать множители, входящие в состав первого

    добавить к ним множители, которые входят в состав второго и не ходят в состав первого

    Найти произведение чисел, найденных на шаге 2.Полученное число и будет искомым наименьшим общим кратным

    $НОК=3\cdot 3\cdot 11\cdot 7=693$

    Составление списков делителей чисел часто очень трудоемкое занятие. Существует способ нахождение НОД, называемый алгоритмом Евклида.

    Утверждения, на которых основан алгоритм Евклида:

    Если $a$ и $b$ --натуральные числа, причем $a\vdots b$, то $D(a;b)=b$

    Если $a$ и $b$ --натуральные числа, такие что $b

Пользуясь $D(a;b)= D(a-b;b)$, можно последовательно уменьшать рассматриваемые числа до тех пор, пока не дойдем до такой пары чисел, что одно из них делится на другое. Тогда меньшее из этих чисел и будет искомым наибольшим общим делителем для чисел $a$ и $b$.

Свойства НОД и НОК

  1. Любое общее кратное чисел $a$ и $b$ делится на K$(a;b)$
  2. Если $a\vdots b$ , то К$(a;b)=a$
  3. Если К$(a;b)=k$ и $m$-натуральное число, то К$(am;bm)=km$

    Если $d$-общий делитель для $a$ и $b$,то К($\frac{a}{d};\frac{b}{d}$)=$\ \frac{k}{d}$

    Если $a\vdots c$ и $b\vdots c$ ,то $\frac{ab}{c}$ - общее кратное чисел $a$ и $b$

    Для любых натуральных чисел $a$ и $b$ выполняется равенство

    $D(a;b)\cdot К(a;b)=ab$

    Любой общийй делитель чисел $a$ и $b$ является делителем числа $D(a;b)$

Алгоритм Евклида нахождения НОД (наибольшего общего делителя)

Даны два целых неотрицательных числа и . Требуется найти их наибольший общий делитель, т.е. наибольшее число, которое является делителем одновременно и , и . На английском языке "наибольший общий делитель" пишется "greatest common divisor", и распространённым его обозначением является :

(здесь символом "" обозначена делимость, т.е. "" обозначает " делит ")

Когда оно из чисел равно нулю, а другое отлично от нуля, их наибольшим общим делителем, согласно определению, будет это второе число. Когда оба числа равны нулю, результат не определён (подойдёт любое бесконечно большое число), мы положим в этом случае наибольший общий делитель равным нулю. Поэтому можно говорить о таком правиле: если одно из чисел равно нулю, то их наибольший общий делитель равен второму числу.

Алгоритм Евклида , рассмотренный ниже, решает задачу нахождения наибольшего общего делителя двух чисел и за .

Данный алгоритм был впервые описан в книге Евклида "Начала" (около 300 г. до н.э.), хотя, вполне возможно, этот алгоритм имеет более раннее происхождение.

Алгоритм

Сам алгоритм чрезвычайно прост и описывается следующей формулой:

Реализация

int gcd (int a, int b) { if (b == 0 ) return a; else return gcd (b, a % b) ; }

Используя тернарный условный оператор C++, алгоритм можно записать ещё короче:

int gcd (int a, int b) { return b ? gcd (b, a % b) : a; }

Наконец, приведём и нерекурсивную форму алгоритма:

int gcd (int a, int b) { while (b) { a % = b; swap (a, b) ; } return a; }

Доказательство корректности

Сначала заметим, что при каждой итерации алгоритма Евклида его второй аргумент строго убывает, следовательно, посколько он неотрицательный, то алгоритм Евклида всегда завершается .

Для доказательства корректности нам необходимо показать, что для любых >.

Покажем, что величина, стоящая в левой части равенства, делится на настоящую в правой, а стоящая в правой — делится на стоящую в левой. Очевидно, это будет означать, что левая и правая части совпадают, что и докажет корректность алгоритма Евклида.

Обозначим . Тогда, по определению, и .

Но тогда отсюда следует:

Итак, вспоминая утверждение , получаем систему:

Воспользуемся теперь следующим простым фактом: если для каких-то трёх чисел выполнено: и , то выполняется и: . В нашей ситуации получаем:

Или, подставляя вместо его определение как , получаем:

Итак, мы провели половину доказательства: показали, что левая часть делит правую. Вторая половина доказательства производится аналогично.

Время работы

Время работы алгоритма оценивается теоремой Ламе , которая устанавливает удивительную связь алгоритма Евклида и последовательности Фибоначчи:

Если > и для некоторого , то алгоритм Евклида выполнит не более рекурсивных вызовов.


Эта статья про нахождение наибольшего общего делителя (НОД) двух и большего количества чисел. Сначала рассмотрим алгоритм Евклида, он позволяет находить НОД двух чисел. После этого остановимся на методе, позволяющем вычислять НОД чисел как произведение их общих простых множителей. Дальше разберемся с нахождением наибольшего общего делителя трех и большего количества чисел, а также приведем примеры вычисления НОД отрицательных чисел.

Навигация по странице.

Алгоритм Евклида для нахождения НОД

Заметим, что если бы мы с самого начала обратились к таблице простых чисел , то выяснили бы, что числа 661 и 113 – простые, откуда можно было бы сразу сказать, что их наибольший общий делитель равен 1 .

Ответ:

НОД(661, 113)=1 .

Нахождение НОД с помощью разложения чисел на простые множители

Рассмотрим еще один способ нахождения НОД. Наибольший общий делитель может быть найден по разложениям чисел на простые множители . Сформулируем правило: НОД двух целых положительных чисел a и b равен произведению всех общих простых множителей, находящихся в разложениях чисел a и b на простые множители .

Приведем пример для пояснения правила нахождения НОД. Пусть нам известны разложения чисел 220 и 600 на простые множители, они имеют вид 220=2·2·5·11 и 600=2·2·2·3·5·5 . Общими простыми множителями, участвующими в разложении чисел 220 и 600 , являются 2 , 2 и 5 . Следовательно, НОД(220, 600)=2·2·5=20 .

Таким образом, если разложить числа a и b на простые множители и найти произведение всех их общих множителей, то этим будет найден наибольший общий делитель чисел a и b .

Рассмотрим пример нахождения НОД по озвученному правилу.

Пример.

Найдите наибольший общий делитель чисел 72 и 96 .

Решение.

Разложим на простые множители числа 72 и 96 :

То есть, 72=2·2·2·3·3 и 96=2·2·2·2·2·3 . Общими простыми множителями являются 2 , 2 , 2 и 3 . Таким образом, НОД(72, 96)=2·2·2·3=24 .

Ответ:

НОД(72, 96)=24 .

В заключение этого пункта заметим, что справедливость приведенного правила нахождения НОД следует из свойства наибольшего общего делителя, которое утверждает, что НОД(m·a 1 , m·b 1)=m·НОД(a 1 , b 1) , где m – любое целое положительное число.

Нахождение НОД трех и большего количества чисел

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …, НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ; 60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида: 570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , то d 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть, НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 , 294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

1.1 Применение алгоритма Евклида

Как и всякая добротно выполненная работа, алгоритм Евклида дает гораздо больше, чем от него первоначально ожидалось получить. Из его разглядывания ясно, например, что совокупность делителей а и b совпадает с совокупностью делителей (a, b). Еще он дает практический способ нахождения чисел u и v из Z (или, если угодно, из теоремы пункта 2) таких, что

r n = au + bv = (a, b).

Действительно, из цепочки равенств имеем:

r n = r n -2 - r n -1 q n = r n -2 - (r n -3 - r n -2 q n -1) q n =...

(идем по цепочке равенств снизу вверх, выражая из каждого следующего равенства остаток и подставляя его в получившееся уже к этому моменту выражение)

Au + bv = (a, b).

Несомненно, описанная Евклидом процедура определения общей меры двух величин применительно к числам (а общая мера двух натуральных чисел, очевидно, есть их наибольший общий делитель) была изобретена задолго до Евклида. Таким же образом находили НОД и древние китайские математики. И только то, что эта процедура стала известна в эпоху Возрождения именно из «Начал, дало ей название « алгоритм Евклида»

Скорее всего, она возникла из коммерческой практики древних купцов, когда им надо было сравнивать различные отношения целых чисел. Как, например, сравнивать отношения чисел 3703700 и 1234567 и чисел 22962965 и 7654321? Вполне естественна была попытка узнать, сколько раз меньшее число укладывается в большем. Легко проверить, что 3703700 = 2 · 1234567 + 1234566, а 22962965 = 3 · 7654321 + 2. Ясно теперь, что отношение 3703700 к 1234567 меньше, чем отношение 22962965 к 7654321. Таким образом, что сейчас мы записываем как

2,99999919 <= 3, 000000261,

Древние вычислители объясняли длинной фразой.

Если бы пришлось сравнить более близкие отношения чисел, например, и, то вычисления были бы более сложными:

71755875 = 61735500 + 10020375;

61735500 = 6 · 10020375 + 1613250;

10020375 = 6 · 1613250 + 340875;

1613250 = 4 · 340875 + 249750;

340875 = 249750 + 91125;

249750 = 2 · 91125 + 67500;

91125 = 67500 + 23625;

67500 = 2 · 23625 + 20250;

23625 = 20250 + 3375;

20250 = 6 · 3375.

Алгоритм Евклида здесь позволяет определить НОД чисел 71755875 и 61735500, равный 3375 и соответствует разложению отношения 71755875 к 61735500 в цепную дробь:

Алгоритм Евклида оказывается эквивалентным современной процедуре разложения числа в цепную дробь и более того, позволяет «округлить» отношения чисел, т.е. заменять дробь с большим знаменателем на очень близкую к ней дробь с меньшим знаменателем. В самом деле, выражение

равное дроби, в современной математике называется «подходящей дробью» разложения отношения б= в цепную (или непрерывную) дробь.

Ясно, что

б=1+ < 1 + и б=1 + > 1+ = ,

поскольку

Приведенное сравнение > было выполнено в III в. до н.э. Аристархом Самосским в трактате «О расстоянии и размерах Луны и Солнца».

Сейчас известно, что подходящие дроби разложения любого (рационального или иррационального) числа в цепную дробь представляют собой наилучшие рациональные приближения этого числа.

Алгоритмы с многочленами

Алгоритм Евклида - метод для нахождения наибольшего общего делителя двух целых чисел, а также двух многочленов от одного переменного...

Одним из древнейших математических алгоритмов является алгоритм Евклида для нахождения наибольшего общего делителя двух положительных чисел. Вот его простейший вид. Пусть заданы два целых числа. Если они равны...

Анализ алгоритма Евклида в Евклидовых кольцах

Прежде чем, приступить к анализу алгоритма Евклида рассмотрим числа Фибоначчи. Суть последовательности Фибоначчи в том, что начиная с 1,1 следующее число получается сложением двух предыдущих. 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 …...

История формирования понятия "алгоритм". Известнейшие алгоритмы в истории математики

Алгоритм Евклида является универсальным способом, который позволяет вычислять наибольший общий делитель двух положительных целых чисел. Описание алгоритма нахождения НОД делением: 1. Большее число делим на меньшее 2. Если делится без остатка...

Кольцо целых чисел Гаусса

Мы пользуемся обычным для колец определением наибольшего общего делителя. НОДом двух гауссовых чисел называется такой их общий делитель, который делится на любой другой их общий делитель. Как и во множестве целых чисел...

Математические основы системы остаточных классов

Рассмотрим пример. Пусть р = 6. Тогда имеем шесть классов разбиения множества целых чисел по модулю 6: r = 0; r = 1; r = 2; r = 3; r = 4; r = 5; где через r обозначен остаток от деления целого числа на 6...

Методика изучения многочленов на факультативных занятиях в старших класса средней общеобразовательной школе

Пусть кольцо многочленов над. Определение 1: Пусть и, если существует многочлен, то остаток от деления равен нулю, то называется делителем многочлена и обозначается: ()...

Основные этапы становления и структура современной математики

В III веке до нашей эры в Александрии появилась книга Евклида с тем же названием, в русском переводе "Начала". От латинского названия "Начал" произошёл термин "элементарная геометрия". Несмотря на то...

На территории некого города N размещены заводы и магазины, в которые поставляется продукция с этих заводов. В результате разработки были определены возможные трассы для прокладки коммуникаций и оценена стоимость их создания для каждой трассы...

Применение методов дискретной математики в экономике

Фирме, занимающейся перевозкой скоропортящихся товаров, необходимо доставить товар из Суйфэньхе в Хабаровск, причем маршрутов, по которым можно произвести доставку несколько. Расстояние между Суйфэньхе и городом 2 составляет 15 км...

Развитие понятия "Пространство" и неевклидова геометрия

Специальные методы интегрирования рациональных выражений

Пусть необходимо найти НОД многочленов и. Не ограничивая общности, будем считать, что степень не выше степени. Многочлен представим в виде: где - остаток от деления на. Тогда степень меньше степени делителя. Далее...

Теория остатков

Теория остатков

Определение. Число d ??Z , делящее одновременно числа а, b , c , ... , k ??Z , называется общим делителем этих чисел. Наибольшее d с таким свойством называется наибольшим общим делителем. Обозначение: d = (a , b , c , ..., k) . Теорема. Если (a , b) = d...

Теория остатков

Пусть требуется решить линейное диофантово уравнение: ax + by = c , где a , b , c ??Z ; a и b - не нули. Попробуем порассуждать, глядя на это уравнение. Пусть (a , b) = d . Тогда a = a 1 d ; b = b 1 d и уравнение выглядит так: a 1 d· x + b 1 d· y = c , т.е. d· (a 1 x + b 1 y) = c...

  • Ознакомить с понятием «алгоритм Евклида».
  • Научить находить наиболее общие делители разными математическими способами.

Ход урока

Понятие Алгоритм Евклида

Является одним из древнейших математических , которой уже более 2000 лет.

Алгоритм Евклида придуман для нахождения наибольшего общего делителя пары целых чисел.

Наибольший общий делитель

Наибольший общий делитель (НОД) – это число, делящее без остатка два числа и делится само без остатка на любой другой делитель данных чисел.

Другими словами, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется общий делитель.

Алгоритм нахождения НОД делением

Описание алгоритма нахождения наибольшего общего делителя делением

Большее число делится на меньшее

Если делится без остатка, то меньшее число и есть наибольший общий делитель. Теперь нужно выйти из цикла

Если есть остаток, то большее число заменяем на остаток от деления

Переход к пункту 1.

Пример:

Найти наибольший общий делитель для 300 и 180.

300/180 = 1 (остаток 120)

180/120 = 1 (остаток 60)

120/60 = 2 (остаток 0).

Конец: наибольший общий делитель – это 6.

В цикле «a» или «b» фиксируется остаток от деления. Когда остатка нет (мы не знаем в «а» он или «b,» поэтому проверяем оба условия ), то цикл завершается.

В конце выводится сумма «a» и «b», потому что мы не знаем, в какой переменной записан наибольший общий делитель, а в одной из них в любом случае 0, не влияющий на результат суммы.

Алгоритм нахождения НОД вычитанием

Описание алгоритма нахождения наибольшего общего делителя вычитанием

Из большего числа вычитается меньшее

Если получается 0, то числа равны друг другу и являются наибольшим общим делителем. Выход из цикла

Если результат вычитания не равен 0, то большее число заменяется на результат вычитания

Переход к пункту 1.

Пример: Найти для чисел 300 и 180.

Конец: Наиболее общий делитель чисел 300 и 180 – 60.

Как способ нахождения наибольшей общей меры двух отрезков (метод попеременного вычитания) был известен ещё пифагорейцам.

При нахождении наибольшей общей меры двух отрезков поступают такими же способами, что и выше.

Операция деления с остатком заменяется ее геометрическим аналогом: меньший отрезок откладывают на больший столько раз, сколько возможно, а оставшуюся часть большего отрезка (а это остаток деления) откладывают на меньшем отрезке.

Если отрезки a иb соизмерыми, то последний не нулевой остаток даст наибольшую общую меру отрезков.

В случае их несоизмеримости полученная последовательность не нулевых остатков будет бесконечной.

Пример:

В качестве отрезков возьмём сторону AB и AC равнобедренного треугольника ABC, у которого A=C = 72°, B= 36°.

В качестве первого остатка мы получим отрезок AD (CD-биссектриса угла C), и, как легко видеть, последовательность и нулевых остатков будет бесконечной.

Значит, отрезки AB и AC не соизмеримы.

Вопросы

1. Что представляет собой алгоритм Евклида?

2. Что такое наибольший общий делитель?

Список использованных источников

1. Урок на тему: «Алгоритм Эвклида», Корчевой П. И., г. Луцк

2. Щетников А. И. Алгоритм Евклида и непрерывные дроби. - Новосибирск: АНТ, 2003 г.

3. Коунтинхо С. Введение в теорию чисел. Алгоритм RSA, – М., 2001 г.

4. Кострикин А.И. Введение в алгебру, – М., 2000 г.


Отредактировано и выслано преподавателем Киевского национального университета им. Тараса Шевченко Соловьевым М. С.

Над уроком работали

Корчевой П. И.

Соловьев М. С.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме