Глюконеогенез схема процесса необратимые реакции субстратные циклы. Как вещества включаются в глюконеогенез? Синтез глюкозы из глицерина

Глюконеогенез - синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пировиноградная кислоты, так называемые гликогенные аминокислоты и ряд других соединении. Иными словами, предшественниками глюкозы в глюконеогенезе могут быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот. У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (корковое вещество).

Большинство стадий глюконеогенеза представляет собой обращение реакций гликолиза. Только три реакции гликолиза (гексокиназная, фосфофруктокиназная и пируваткиназная) необратимы, поэтому в процессе глюконеогенеза на трех этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата.

Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО 2 и АТФ карбоксилируется (В реакцию вступает так называемая активная форма СО 2 , в образовании которой, помимо АТФ, участвует биотин. ) с образованием оксалоацетата:

Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксикиназы (Название фермента дано по обратной реакции ) превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):

В дальнейшем было установлено, что в процессе образования фосфоенолпирувата участвуют как ферменты цитоплазмы, так и митохондрий.

Первый этап локализуется в митохондриях (рис. 88). Пируват-карбоксилаза, которая катализирует эту реакцию, является аллостерическим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же в митохондриях восстанавливается в малат:

Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. В митохондриях отношение НАДН 2 /НАД относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии, проходя митохондриальную мембрану. В цитоплазме отношение НАДН 2 /НАД очень мало и малат вновь окисляется в оксалоацетат при участии цитоплазматической НАД-зависимой малатдегидрогеназы:

Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитоплазме клетки. На рис. 89 изображен изложенный выше процесс образования фосфоенолпирувата из пирувата.

Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат. Фосфоенолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-дифосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:

Следует заметить, что фруктозобисфосфатаза ингибируется АМФ и активируется АТФ, т. е. данные нуклеотиды оказывают на фруктозобисфосфатазу действие, противоположное их действию на фосфофруктокиназу (см. с. 329). Когда концентрация АМФ мала, а концентрация АТФ велика, то стимулируется глюконеогенез. Напротив, когда величина отношения АТФ/АМФ низка, в клетке происходит расщепление глюкозы.

Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т. е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фосфатазы:

На рис. 89 представлены «обходные» реакции при биосинтезе глюкозы из пирувата и лактата. Интересно отметить, что между гликолизом, интенсивно протекающим в мышечной ткани при ее активной деятельности, и глюконеогенезом, особенно характерным для печеночной ткани, существует тесная взаимосвязь. При максимальной активности мышц в результате усиления гликолиза образуется избыток молочной кислоты, диффундирующей в кровь. Значительная часть избытка лактата в печени превращается в глюкозу (глюконеогенез). Образовавшаяся в печени глюкоза затем может быть использована как энергетический субстрат, необходимый для деятельности мышечной ткани. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени представлена на схеме.

Аэробный метаболизм пирувата

Клетки, плохо снабжаемые кислородом, могут частично или полностью существовать за счет энергии гликолиза. Однако большинство тканей энергию получает в основном за счет аэробных процессов (например, окисления пирувата). При гликолизе пировиноградная кислота восстанавливается и превращается в молочную кислоту - конечный продукт анаэробного обмена; в случае же аэробного превращения пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетил-КоА, который затем может окисляться до воды и СО 2 .

Окисление пирувата до ацетил-КоА (окислительное декарбоксилирование пировиноградной кислоты)

Окисление пирувата до ацетил-КоА, катализируемое пируватдегидрогеназной системой, протекает в несколько стадий (рис. 90). В нем принимают участие три фермента (пируватдегидрогеназа, липоатацетилтрансфераза, липоамиддегидрогеназа) и пять коферментов (НАД, ФАД, тиаминдифосфат, амид липоевой кислоты и коэнзим А). Суммарно реакцию можно написать следующим образом:

Пируват + НАД + HS-KoA --> Ацетил-КоА + НАДН 2 + СО 2

Реакция сопровождается значительным уменьшением стандартной свободной энергии и практически необратима.

Первая стадия окислительного декарбоксилирования пирувата катализируется ферментом пируватдегидрогеназой (E 1); коферментом в этой реакции служит ТДФ. Отщепляется СО 2 , и из пирувата образуется гидроксиэтильное производное ТДФ:

Во второй стадии процесса оксиэтильная группа комплекса E 1 - ТДФ-СНОН-СН 3 переносится на амид липоевой кислоты, который в свою очередь связан с ферментом липоатацетилтрансферазой (Е 2). Образуется ацетил, связанный с восстановленной формой амида липоевой кислоты, и освобождается ТДФ-Е 1 .

Ацетил-липоат (связанный с ферментным комплексом) затем взаимодействует с коэнзимом А (третья стадия). Реакция катализируется ферментом липоат-ацетилтрансферазой (Е 2). Образуется ацетил-КоА, который отделяется от ферментного комплекса.

Глюконеогенез – синтез глюкозы из веществ неуглеводной природы, протекающий в основном в печени, и, менее интенсивно, – в корковом веществе почек и слизистой оболочке кишечника.

Функция глюконеогенеза – поддержание уровня глюкозы в крови при длительном голодании и интенсивных физических нагрузках. Постоянное поступление глюкозы в качестве источника энергии особенно необходимо для нервной ткани и эритроцитов.

Субстраты глюконеогенеза – ПВК, молочная кислота, глицерин, аминокислоты. Их включение в глюконеогенез зависит от физиологического состояния организма.

Большинство реакций глюконеогенеза являются обратными гликолизу. Они катализируются теми же ферментами, что и соответствующие реакции гликолиза.

Три реакции гликолиза (гексокиназная (1), фосфофруктокиназная (3), пируваткиназная (10)) необратимы, и при глюконеогенезе на этих этапах работают другие ферменты.

Синтез глюкозы из ПВК .

1-ый этап – образование фосфоенолпирувата из ПВК.

а) карбоксилирование ПВК под влиянием пируваткарбоксилазы с образованием оксалоацетата в митохондрии:

Пируваткарбоксилаза – митохондриальный фермент, аллостерическим активатором которого является ацетил-KоА. Для оксалоацетата мембрана митохондрий непроницаема, поэтому оксалоацетат в митохондриях превращается в малатпри участии митохондриальной НАД-зависимой малатдегидрогеназы:

Малат выходит из митохондрии через митохондриальную мембрану в цитозоль, где под действием цитоплазматической НАД-зависимой малатдегидрогеназы окисляется в оксалоацетат:

б) в цитозоле клетки протекает декарбоксилирование и фосфорилирование оксалоацетата с образованием фосфоенолпирувата; фермент – фосфоенолпируваткарбоксикиназа:

2-ой этап – превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат.

Фосфоенолпируват в результате обратимых реакций гликолиза превращается во фруктозо-1,6-фосфат. Далее следует необратимая фосфофруктокиназная реакция гликолиза. Глюконеогенез идёт в обход этой реакции:

3-ий этап – образование глюкозы из фруктозо-6-фосфата.

Фруктозо-6-фосфат превращается в глюкозо-6-фосфат, который дефосфолирируется (реакция идёт в обход гексокиназной) под влиянием глюкозо-6-фосфатазы.

И печени. В периоды между приемами пищи, длительного голодания или интенсивных физических нагрузок запас глюкозы может исчерпываться, поэтому существует метаболический путь глюконеогенеза, что обеспечивает ее образования из неуглеводородных предшественников, таких как пируват и близкие трех-или чотирикарбонови соединения. Глюконеогенез является энергозатратной процессом.

Метаболический путь глюконеогенеза присутствует у представителей всех основных групп живой природы: бактерий , архебактреий , растений , грибов и животных . Реакции глюконеогенеза одинаковы у всех организмов во всех тканях, но может отличаться его метаболический контекст.

Глюконеогенез обеспечивает синтез глюкозы из пирувата, а гликолиз наоборот - расщепление глюкозы до пирувата, однако глюконеогенез не является обратной копией гликолиза, хотя многие реакций (семь из десяти) являются общими для обоих путей. Три реакции гликолиза очень екзергоничнимы (т.е. имеют большую отрицательную смену свободной энергии) и необратимые в живых клетках: превращение глюкозы в глюкозо-6-фосфата, превращение фруктозо-6-фосфата к фруктозо-1 ,6-бисфосфат и преобразования фосфоенолпирувату (ФЭП) до пирувата (см. гликолиз). В глюконеогенезе есть обходные пути (шунты) для этих реакций, которые также имеют большую отрицательную изменение свободной энергии. Таким образом оба пути - и гликолиз, и глюконеогенез - есть необратимыми в клетке.


1. Локализация и значение

Глюконеогенез происходит в клетках бактерий, археобактерий, грибов, растений и животных. Как и гликолиз, почти все преобразования глюконеогенеза локализуется в цитоплазме , однако у эукариот первая реакция этого пути имеет место в митохондриях .

У животных важнейшими предшественниками глюкозы является тривуглецеви соединения, такие как пируват, лактат, глицерол и некоторые аминокислоты . В млекопитающих глюконеогенез наиболее интенсивно протекает в печени, а также в некоторой степени в корковом слое почек и эпителии тонкого кишечника . За сутки в организме человека синтезируется до 80 г глюкозы . После физических нагрузок молочная кислота образована в скелетных мышцах переносится кровь "ю к печени, где превращается в глюкозу, которая транспортируется обратно в мышцы и служит там субстратом для синтеза гликогена. Этот метаболический путь получил название цикл Кори . Глюконеогенез играет особое значение во время голодания, так методом изотопного мечения было показано что на 22 часа воздержания от еды он обеспечивает образование 64% всей глюкозы в крови, а на 46 час эта цифра приближается к 100% .

Глюконеогенез также интенсивно происходит в семенах , которое прорастает, и является частью пути, превращает запасные липиды и белки в дисахариды (преимущественно сахарозу), которые могут транспортироваться во все ткани молодого растения. Также фотоавтотрофам глюконеогенез нужен для преобразования первичных продуктов фотосинтеза к глюкозе. Последняя необходима растениям для синтеза клеточной стенки и как предшественник нуклеотидов , коферментов и многих других веществ .

Многие микроорганизмы начинают глюконеогенез из двокарбонових и трикарбоновых соединений, имеющихся в среде, где они живут, таких как ацетат , лактат, пропионат .


2. Реакции глюконеогенеза

Семь реакций глюконеогенеза являются обратными к реакциям гликолиза. Энергетический барьер трех необратимым гликолитических реакций преодолевается в глюконеогенезе обходными путями, к ним относятся: синтез фосфоенолпирувату с пирувата, преобразования фруктозо-1 ,6-бисфосфат в фруктозо-6-фосфат и превращение глюкозо-6-фосфата к глюкозе . Такая организация противоположных метаболических путей не только позволяет обоим быть термодинамически выгодным при одинаковых условиях, но и дает возможность для их разрешения регуляции .


2.1. Синтез фосфоенолпирувату с пирувата

Последняя реакция гликолиза - превращение фосфоенолпирувату в пируват с одновременным фосфорилированием АДФ - имеет большую отрицательную изменение свободной энергии и является необратимой. В глюконеогенезе противоположное преобразования (пирувата в фосфсфоенолпируват) происходит окольным путем, состоящий как минимум из двух реакций , и у эукариот требует ферментов как митохондрий так и цитоплазмы. Протекания этой стадии отличается в зависимости от того пируват или лактат является предшественником в синтезе глюкозы .

Пируват сначала превращается в оксалоацетата вналслидок карбоксилирование пируваткарбоксилазою. Этот фермент использует в качестве кофермента биотин , реакция сопровождается гидролизом одной молекулы АТФ . Биотин выступает носителем бикарбоната, предварительно активируется путем образования смешанного ангидрида (карбоксифосфату) вследствие переноса фосфатной группы с АТФ . Уравнение реакции:

Пируват + АТФ + HCO - 3 → оксалоацетат + АДФ + Ф н ;

Реакция карбоксилирования необходима для метаболической активации пирувата .

Следующая реакция - одновременное декаброксилювання и фосфорилирования оксалоацетата - катализируется ферментом фосфоенолпіруваткарбоксикіназою, что требует присутоности ионов Mg 2 + и ГТФ в качестве донора фосфатной группы. Продуктом этой реакции является фосфоенолпируват, она обратная по клеточных условий .

Оксалоацетат + ГТФ → фосфоенолпируват + ГДФ + CO 2;

Суммарное уравнение процесса:

Пируват + АТФ + ГТФ + HCO - 3 → Фосфоенолпируват + АДФ + ГДФ + Ф н + CO 2, ΔG 0 = 0,9 кДж / моль.

Таким образом для преобразования пирувата до фосфоенолпирувату необходим гидролиз двух молекул нуклеотидтрифосфатив, тогда как противоположный процесс в гликолизе позволяет синтезировать только одну молекулу АТФ. Хотя стандартная изменение свободной энергии для суммарного процесса составляет 0,9 кДж / моль, в реальных условиях благодаря очень низкой концентрации фосфоенолпирувату ΔG = -25 кДж / моль, т.е. превращение является сильно екзергоничним и необратимым .


2.1.1. Челночный транспорт оксалоацетата

Увторення оксалоацетата является так называемой анаплеротичною реакцией цикла трикарбоновых кислот , то есть такой, который поддерживает достаточный уровень его метаболитов . Поэтому, как и сам ЦТК, она происходит в матриксе митохондрий, пируваткарбоксилаза является исключительно митохондриальных ферментов у эукариот. Зато локализация ФЭУ-карбоксикиназы отличается у разных организмов: в печени мышей и крыс она содержится только в цитозоле, в кроликов и голубей - только в митохондриях, а у человека и морских свинок примерно поровну распределена между двумя компартментами . Остальные ферментов глюконеогенеза является цитозольного, таким образом для прохождения этого метаболического пути оксалоацетат или фосфоенолпируват должны транспортироваться из митохондрий в цитоплазму. Конкретный механизм транспорта зависит от организма и вещества, выступает предшественником в синтезе глюкозы.

Если предшественником является пируват, то используется преимущественно малатний путь транспорта. Пировиноградная кислота переносится в матрикса митохондрий или образуется там с аминокислоты аланина в реакции переаминирования, здесь происходит карбоксилазна реакция. Образован оксалоацетат не может быть транспортирован в цитзолю, из-за того, что внутренняя мембрана митохондрий у него нет транспортера. Поэтому оксалоацетат восстанавливается малатдегидрогеназы в малата за счет переноса гидрид иона с НАД H. Несмотря на то, что стандартная изменение свободной энергии для этой реакции достаточно высока, в условиях характерных для матрикса митохондрий (в частности высокой концентрации оксалоацетата), она является обратимой (ΔG ~ 0). Образован L-малат покидает митохондрии при посредничестве специального переносчика и в цитоплазме снова окисляется до оксалоацетата. Последний превращается в ФЭП. Этот путь обеспечивает экспорт в цитозоль не только оксалоацетата но и восстановительных эквивалентов НАДH, необихдних для протекания глюконеогензу (восстановление 1,3-бисфосфогицерату до глицеральдегид-3-фосфата). В цитоплазме соотношение НАДH / НАД + составляет около 8 ? 10 -4 и есть в сто тысяч раз меньше, чем в митохондриях. Образование малата в матриксе митохондрий, его транспорт в цитоплазму и дегидрогенизации обеспечивает баланс между образованным и использованным НАДH в цитоплазме при глюконеогенеза .

Несколько отличается начало глюконеогенеза в том случае, когда субстратом для синтеза глюкозы служит лактат (образован в эритроцитах или скелетных мышцах во время интенсивных нагрузок). В таком случае молочная кислота дегидрогенизуеться в цитоплазме, эта реакция является источником НАДH, а значит нет необходимости в переносе восстановительных эквивалентов в виде малата из митохондрий. Образован пируват транспортируется митохондрий, где является субстратом для пируваткарбоксилазы. После этого оксалоацетат сразу же в матриксе подлежит декарбоксилированию и фосфорилированию благодаря митохондриальной фосфоенолпіруваткарбоксикіназі. Образован фосфоенолпируват покидает митохондрии .

Существует еще один путь, не предусматривает переноса НАДH - аспартатных. В этом случае оксалоацетат в матриксе вступает в реакцию переаминирования с аминокислотами катлизовану АсАТ . Вследствие этого он превращается в аспартат , который транспортируется в цитозоль. Там опять происходит переаминирования с участием аспартатаминотрасферазы, в результате чего образуется оксалоацетат. Этот путь также используется тогда, когда предшественником в глюконеогенезе является молочная кислота, в частности организмами не содержащие митохондриальной ФЭУ-каброксикиназы.


2.2. Фосфорилазни реакции глюконеогенеза

Две другие необратимые стадии гликолиза - киназного реакции: фосфорилирование фруктозо-6-фосфата и глюкозы с использованием АТФ. Обратные реакции требовали бы перенос фосфатной группы с фосфорильованих моносахаридов назад на АДФ, однако в глюконеогенезе этого не происходит, соответствующие преобразования вместо катализируемых другими энзимами - фосфатазы (фруктозо-1 ,6-бисфосфатазою (ФБФ-1) и глюкозо-6-фосфатазой). Фосфатазни реакции - это простой гидролиз, продуктом которого является фосфатная кислота :

Фруктозо-1 ,6-бисфосфат + H 2 O → фруктозо-6-фосфат + Ф н; Глюкозо-6-фосфат + H 2 O → глюкоза + Ф н.

Оба фермента является магний-зависимыми. Глюкозо-6-фосфатаза отсутствует в большинстве тканей, поэтому глюконеогенез в них завершается формированием глюкозо-6-фосфата, который может быть использован для синтеза гликогена или участия в других метаболических путях. Такие ткани не способны пополнять уровень глюкозы в крови, поскольку глюкозо-6-фосфат не может транспортироваться плазматической мембраной . Глюкозо-6-фосфатаза присутствует в гепатоцитах, и, в меньшей степени, в клетках печени и эпителия тонкого кишечника . Локализуется она в полости эндоплазматического ретикулума , куда специальным переносчиком транспортируется глюкозо-6-фосфат, а позже другим транспортным белком скачивается глюкоза и фосфат .


3. Энергетические затраты глюконеогензу

Формирование глюкозы из пирувата является термодинамически невыгодным процессом, поэтому оно должно быть сопряженное с екзергоничнимы реакциями, а именно гидролизом нуклеотидтрифосфатив . Суммарное уравнение глюконеогенеза, в случае, когда исходным веществом выступает пируват, выглядит так:

2 Пируват + 4АТФ + 2ГТФ + 2НАДH (H +) + 4H 2 O → глюкоза + 4АДФ + 2ГТФ + 6Ф н + 2НАД +;

Так что для образования одной молекулы глюкозы необходима энергия шести високоенргетичних фосфатных групп (четырех от АТФ и двух от ГТФ). Также в этом процессе используются две молекулы НАДH для восстановления 1,3-бисфосфоглицерату.

Для сравнения суммарное уравнение гликолиза:

Глюкоза + 2АДФ + 2Ф р + НАД + → 2 пируват + 2АТФ + 2H 2 O + НАДH (H +);

Очевидно, что глюконеогенез не просто обратным к гликолиза, поскольку в таком случае для его прохождения хватало бы всего двух молекул АТФ. Глюконеогенез относительно энергетически "дорогой" метаболический путь, многие из энергии требуется для обеспечения его необратимости. По клеточных условий суммарное изменение свободной энергии в процессе гликолиза составляет около -63 кДж / моль, а в глюконеогенезе - 16 кДж / моль .


4. Предшественники в синтезе глюкозы

Глюкогенни аминокислоты
Аланин Пируват
Цистеин
Глицин
Серин
Треонин
Триптофан
Аргинин α-кетоглутарат
Глутамат
Глутамин
Гистидин
Пролин
Изолейцин Сукцинил-КоА
Метионин
Треонин
Валин
Фенилаланин Фумарат
Тирозин
Аспарагин Оксалоацетат
Аспартат

4.1. Пируват и промежуточные продукты ЦТК

Описанный метаболический путь глюконеогенеза может использоваться для биосинтеза глюкозы не только с пирувата и лактата, а также и многих других веществ, в частности промежуточных продуктов цикла трикарбоновых кислот (ЦТК). Такие соединения как цитрат , изоцитрат, α-кетоглутарат, сукцинил-КоА, сукцинат , фумарат и малат превращаются в ходе ЦТК в оксалоацетата, а следовательно могут быть субстратами для глюконеогенеза .

Среди глюкогенних аминокислот наибольшее значение для глюконеогенеза имеют аланин и глутамин, поскольку они являются основными переносчиками аминогрупп от различных органов к печени. В митохондриях гепатоцитов от них отщепляются аминогруппы, а карбоновые скелеты используются на биосинтез глюкозы .


4.2. Глицерол

Предшественником в синтезе глюкозы также может выступать продукт гидролиза нейтральных жиров гилцерол. Для этого в клетках печени он фосфорилируется глицеролкиназою, после чего происходит окисление второго атома углерода и образуется глицеральдегид-3-фосфат, который может вступать в глюконеогенез. Хотя глицеролфосфат является важным предшественником в синтезе триглицеридов в адипоцитах , эти клетки не имеют глицеролкиназы. Поэтому они используют для синтеза этого вещества сокращенный вариант глюконеогенеза: гилцеронеогенез, который включает преобразования пирувата до дигидроксиацетонфосфату с его последующим восстановлением до глицеролфосфату .


4.3. Жирные кислоты


5. Регуляция глюконеогенеза

Если гликолиз и глюконеогенез могли протекать одновременно протекать с высокой интенсивностью в клетке, результатом было бы бесполезно потребления энергии и преобразования ее в тепло. Например фосфофруктокиназна и фруктозо-1 ,6-фосфатазна реакции:

Фруктозо-6-фосфат + АТФ → фруктозо-1 ,6-бисфосфат + АДФ; Фруктозо-1 ,6-бисфосфат + H 2 O → фруктозо-6-фосфат + Ф н;

давали бы в сумме только гидролиз АТФ (происходит так называемый субстратный цикл)

АТФ + H 2 O → АДФ + Ф н.

Поэтому эти два пути реципрокной регулируются алостерично, путем ковалентной модификации ферментов и регуляции их синтеза . На скорость глюконеогенеза также влияет доступность сусбтратив. В общем, когда клетке нужна энергия, в ней более активно происходит гликолиз, а когда энергии в избытке, то преобладать глюконеогенез .


5.1. Регуляция пируваткарбоксилазы

Пиурваткарбоксилаза является первым регуляторным ферментом глюконеогенеза. Для функционирования она требует присоединения алостеричного активатора ацетил-КоА, высокий уровень которого свидетельствует о достаточном запасе жирных кислот, которые могут быть окисленной с целью получения энергии . Однако продукт пируваткарбоксилазнои реакции - оксалоацетат - использоваться на пополнение цикла трикарбоновых кислот, а не на глюконеогенез, если только ЦТК НЕ ингибуватиметься высокими уровнями АТФ или НАДH . Негативным модулятором пируваткарбоксилазы является АДФ .


5.2. Регуляция ФЭУ-карбоксикиназы

ФЭУ-карбоксикиназа катализирует первую комитований шаг глюконеогенеза (то есть, однозначно определяет метаболизм определенной соединения по этому пути). У млекопитающих его регуляция происходит преимущественно на транскрипционных уровне в ответ на изменение диеты и уровня гормонов . В частности, глюкагон , гена ФЭУ-карбоксикиназы, активируя экспрессию последнего .


5.3. Регуляция фруктозо-1 ,6-бисфосфатазы

Последний регуляторный фермент глюконеогенеза ингибируется АМФ , высокий уровень которого свидетельствует об исчерпании запасов АТФ . В гепатоцитах его активность привязана к уровню глюкозы в крови благодаря сигнальной молекуле фруктозо-2 ,6-бисфосфат, которая одновременно выступает алостеричним ингибитором фруктозо-1 ,6-бисфосфатазы и алостеричним активатором соответствующего фермента гликолиза - фосфофруктокиназы. Концентрация фруктозо-2 ,6-бисфосфат зависит от скорости его образования из фруктозо-6-фосфата фосфофруктокиназы-2 (ФФК-2) и гидролиза фруктозо-2 ,6-бисфосфатазою (ФБФаза-2). ФФК-2 и ФБФаза-2 - это две разные активности одного бифункционального фермента, который "переключается" путем фосфорилирования .

В случае, когда уровень глюкагона в крови высокий, он стимулирует в гепатоцитах цАМФ-зависимый сигнальный путь, что приводит к фосфорилирования бифункционального фермента протеинкиназой А. Фосфорилированная форма этого белка функционирует как ФБФаза-2 и гидролизует фруктозо-2 ,6-бисфосфат, в результате чего происходит активация фруктозо-1 ,6-бисфосфатазы и угнетение фосфофруктокиназы-1. Итак глюконеогенез происходит интенсивнее, чем гликолиз. Инсулин вызывает противоположную ответ: дефосфорилювання бифункционального фермента, увеличение концентрации фруктозо-2 ,6-бисфосфат, активацию ФФК-1 и угнетение ФБФазы-1 .


Примечания


Источники

  • Berg JM, Tymoczko JL, Stryer L Biochemistry 6th. - WH Freeman and Company, 2007. ISBN 0-7167-8724-5 .
  • Nelson DL, Cox MM Lehninger Principles of Biochemistry 5th. - WH Freeman, 2008. ISBN 978-0-7167-7108-1 .
  • Prescott LM Microbiology 5th. - McGraw-Hill, 2002. ISBN 0-07-282905-2 .
  • Voet D., Voet JG Biochemistry 4th. - С. 487-496. - Wiley, 2011. ISBN 978-0470-57095-1 .
  • Губский Ю.И. Биологическая химия. - С. 191. - Киев-Одесса: Новая книга, 2007.

Потребность в глюконеогенезе

  • для эритроцитов глюкоза является единственным источником энергии;
  • нервная ткань потребляет около 120 г глюкозы в сутки и эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников;
  • глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).

Таким образом, при определенных ситуациях - при низком содержании углеводов в пище, голодании, длительной физической работе, то есть когда глюкоза крови расходуется и наступает гипогликемия, организм должен иметь возможность синтезировать глюкозу и нормализовать ее концентрацию в крови. Это достигается реакциями глюконеогенеза.

Необходимость глюконеогенеза в организме демонстрируют два цикла – глюкозо-лактатный и глюкозо-аланиновый.

Глюкозо-лактатный (выделен желтым) и глюкозо-аланиновый циклы


Глюкозо-лактатный цикл (цикл Кори)

Глюкозо-лактатный цикл - это циклический процесс, объединяющий реакции глюконеогенеза и реакции анаэробного гликолиза . Глюконеогенез происходит в печени, субстратом для синтеза глюкозы является лактат, поступающий в основном из эритроцитов или мышечной ткани.

В эритроцитах молочная кислота образуется непрерывно, так как для них анаэробный гликолиз является единственным способом образования энергии.

В скелетных мышцах высокое накопление молочной кислоты (лактата) является следствием гликолиза при очень интенсивной, субмаксимальной мощности, работе, при этом внутриклеточный рН снижается до 6,3-6,5. Но даже при работе низкой и средней интенсивности в скелетной мышце всегда образуется некоторое количество лактата. Убрать молочную кислоту можно только одним способом - превратить ее в пировиноградную кислоту. Однако сама мышечная клетка ни при работе, ни во время отдыха не способна превратить лактат в пируват из-за особенностей изофермента лактатдегидрогеназы-5 . Зато клеточная мембрана высоко проницаема для лактата и он движется по градиенту концентрации наружу. Поэтому во время и после нагрузки (при восстановлении) лактат легко удаляется из мышцы. Это происходит довольно быстро, всего через 0,5-1,5 часа в мышце лактата уже нет. Малая часть молочной кислоты выводится с мочой.

Большая часть лактата крови захватывается гепатоцитами, окисляется в пировиноградную кислоту и вступает на путь глюконеогенеза. Глюкоза, образованная в печени используется самим гепатоцитом или возвращается обратно в мышцы, восстанавливая во время отдыха запасы гликогена . Также она может распределиться по другим органам.

Глюкозо-аланиновый цикл

Целью глюкозо-аланинового цикла также является уборка пирувата, но, кроме этого решается еще одна немаловажная задача - уборка лишнего азота из мышцы.

При мышечной работе и в покое в миоците распадаются белки и образуемые аминокислоты трансаминируются с α-кетоглутаратом. Полученный глутамат взаимодействует с пируватом. Образующийся аланин является транспортной формой азота и пирувата из мышцы в печень. В гепатоците идет обратная реакция трансаминирования, аминогруппа передается на синтез мочевины, пируват используется для синтеза глюкозы.

Глюконеогенез энергетически затратен

Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы некоторых из них - глюкогенных - полностью включаются в молекулу глюкозы, некоторых - смешанных - частично. Кроме получения глюкозы, глюконеогенез обеспечивает и уборку «шлаков» - лактата, постоянно образуемого в эритроцитах или при мышечной работе, и глицерола, являющегося продуктом липолиза в жировой ткани.

Обходные пути

Как известно, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). В этих реакциях происходит высвобождение энергии для синтеза АТФ. Поэтому в обратном процессе возникают энергетические барьеры, которые клетка обходит с помощью дополнительных реакций.

Глюконеогенез включает все обратимые реакции гликолиза, и особые обходные пути, то есть он не полностью повторяет реакции окисления глюкозы. Его реакции способны идти во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая идет только в печени и почках. Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.

Обход десятой реакции гликолиза

На этом этапе глюконеогенеза работают два ключевых фермента - в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа.

В химическом плане обходной путь десятой реакции выглядит достаточно просто:

Упрощенный вариант обхода десятой реакции гликолиза


Однако дело в том, что пируваткарбоксилаза находится в митохондрии, а фосфоенолпируват-карбоксикиназа - в цитозоле. Дополняет проблему непроницаемость митохондриальной мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшественник оксалоацетата по ЦТК.

Поэтому в реальности все выглядит более сложно:

Обход десятой реакции гликолиза


  1. В цитозоле пировиноградная кислота может появиться при окислении молочной кислоты и в реакции трансаминирования аланина. После этого пируват с импортом с ионами Н+, движущимися по протонному градиенту, проникает в митохондрии. В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Эта реакция идет в клетке постоянно, являясь анаплеротической (пополняющей) реакцией ЦТК.
  2. Далее оксалоацетат мог бы превратиться в фосфоенолпируват, но для этого сначала он должен попасть в цитозоль. Поэтому происходит реакция восстановления оксалоацетата в малат при участии малатдегидрогеназы. В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат. Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците.
  3. В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват, для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется.